Luminal Calcium Regulates the Inositol Trisphosphate Receptor of Rat Basophilic Leukemia Cells at a Cytosolic Site[†]

John H. Horne and Tobias Meyer*

Department of Cell Biology, Duke University Medical Center, Durham, North Carolina 27710

Received March 15, 1995; Revised Manuscript Received July 3, 1995*

ABSTRACT: Hormones, growth factors, and other stimuli can generate Ca²⁺ spikes and waves by activation of the phosphoinositide (PI) pathway. The sources of these Ca²⁺ signals are inositol 1,4,5-trisphosphate (IP₃)-dependent Ca²⁺ stores. Here we use a rapid perfusion apparatus to measure the release of ⁴⁵Ca²⁺ from permeabilized rat basophilic leukemia (RBL) cells to investigate the regulation of IP₃-mediated Ca²⁺ release by cytosolic and luminal Ca²⁺. At 200 nM IP₃, Ca²⁺ release was potentiated by an increase in the cytosolic Ca²⁺ concentration. This potentiation by Ca²⁺ was nearly absent at 500 nM IP₃. Previous studies in smooth muscle cells and neurons showed an inhibition of Ca²⁺ release above 300 nM Ca²⁺. In contrast, no such inhibition was observed in RBL cells. When assayed at low cytosolic Ca²⁺ concentrations, IP₃-mediated release was steeply dependent upon luminal Ca²⁺ concentration. At high luminal Ca²⁺ concentration, 1 μ M IP₃ released most of the stored Ca²⁺ even in the complete absence of cytosolic Ca²⁺. However, at high cytosolic Ca²⁺ concentrations (890 nM), IP₃-mediated release was no longer steeply dependent upon the luminal Ca²⁺ concentration. Furthermore, high concentrations of BAPTA inhibited IP₃-mediated release in the absence of cytosolic Ca²⁺. This suggests that a rapid and local luminal Ca²⁺ feedback is generated by luminal Ca²⁺ ions binding to cytosolic sites of the same channel or closely associated channels. This "luminal Ca²⁺ feedback" can be initiated by an increase in the concentration either of IP₃, of cytosolic Ca²⁺, or of luminal Ca²⁺. It is likely that "luminal Ca²⁺ feedback" is exploited by cells in both the initiation and termination of Ca²⁺ spikes.

Activation of the phosphoinositide (PI) pathway is initiated by receptor-mediated tyrosine phosphorylation of phospholipase C- γ (PLC- γ) or G-protein stimulation of PLC- β . PLC catalyzes the hydrolysis of phosphatidylinositol 4,5-bisphosphate and generates the second messengers diacylglycerol and inositol 1,4,5-trisphosphate (IP₃). Diacylglycerol in turn activates protein kinase C, and IP₃ opens IP₃-gated Ca²⁺ channels in the endoplasmic reticulum (Berridge, 1993). The IP₃-mediated increase in intracellular Ca²⁺ concentration regulates a variety of cellular processes including restructuring of the cytoskeleton, motility, secretion, and transcription. In rat basophilic leukemia cells (RBL cells), the mast cell tissue culture line used in these studies, antigen-mediated cross-linking of IgE receptors leads to tyrosine phosphorylation of PLC-y (Metzger et al., 1986; Eiseman & Bolen, 1992). The role of the PI pathway in mast cells is to mediate exocytosis of secretory granules, synthesis of prostaglandins and leukotrienes, and expression of cytokines (Plaut et al., 1989).

Measurements of Ca^{2+} signals in single RBL cells, hepatocytes, and many other cell types have shown that the IP₃-mediated increase in Ca^{2+} concentration is not a gradual process but rather exhibits unique spatiotemporal patterns. Ca^{2+} signaling has been shown to occur as a series of transient increases in Ca^{2+} concentration, and the frequency

but not the amplitude of transients was found to increase with an increase in the concentration of hormone (Woods et al., 1986; Millard et al., 1989). This temporal pattern of intracellular Ca2+ transients has been referred to as Ca2+ spiking. Ca²⁺ spiking may offer a unique form of temporal regulation which is advantageous for several cellular processes including Cl- transport, hormone secretion, and activation of kinases (Kasai & Augustine, 1990; Tse et al., 1993; Hanson et al., 1994). Various theoretical models have been proposed describing the regulatory processes necessary to generate Ca²⁺ spikes and Ca²⁺ waves. A common feature of these models is a positive feedback parameter in which Ca²⁺ can activate its own release, thereby generating the explosive rise in Ca²⁺ concentration observed at the beginning of a Ca²⁺ spike or a Ca²⁺ wave. Candidates for this positive feedback that have been proposed include the Ca²⁺ activation of PLC, Ca2+-induced Ca2+ release from IP3insensitive Ca²⁺ stores, and the co-requirement of Ca²⁺ and IP₃ for the opening of IP₃-gated Ca²⁺ channels [for a review of different models, see Berridge (1993) and Meyer and Stryer (1991)].

IP₃ receptors show structural as well as functional similarities with the ryanodine receptor, a family of Ca²⁺ channels predominantly expressed in muscle cells and neurons. Ryanodine receptors mediate the release of Ca²⁺ from intracellular stores by a direct Ca²⁺-induced Ca²⁺ release mechanism (Tsien & Tsien, 1990). Studies with brain microsomes and skinned smooth muscle cells have shown that the IP₃ receptor can also be regulated by Ca²⁺ (Bezprozvanny et al., 1991; Finch et al., 1991; Iino & Endo, 1992). The regulation was found to be biphasic. Increasing the free Ca²⁺ concentration up to 300 nM potentiates IP₃-

[†] This work was supported by a grant from the National Institute of General Medical Sciences (GM48113), and by a Fellowship of the David and Lucile Packard Foundation to T.M.

^{*} Address correspondence to this author at the Department of Cell Biology, Box 3709, DUMC, Durham, NC 27710. Fax: (919) 681-7978. Telephone: (919) 681-8072.

^{*} Abstract published in Advance ACS Abstracts, September 15, 1995.

mediated Ca²⁺ release. A further increase in the free Ca²⁺ concentration above 300 nM leads to the inhibition of Ca²⁺ release. Finch et al. proposed that the potentiation of Ca²⁺ release can be explained by Ca2+ and IP3 functioning as coagonists for channel opening (Finch et al., 1991). Recently, however, controversy has arisen as to the existence of this mode of regulation. Experiments by Combettes et al. suggested that the observed Ca²⁺ potentiation is the result of an EGTA artifact [Combettes et al., 1994; discussed in Combettes and Champeil (1994) and Finch and Goldin (1994)]. An additional level of complexity was added by the finding that the concentration of luminal Ca²⁺ significantly affects IP3-mediated release. Missiaen et al. demonstrated that increased loading of the ER with Ca2+ reduces the amount of IP3 required for half-maximal release of stored Ca²⁺ (Missiaen et al., 1992), and also that the potentiation of release by cytosolic Ca²⁺ is dependent upon the luminal Ca²⁺ concentration (Missiaen et al., 1994). In contrast, other studies have shown that partial depletion of Ca²⁺ stores by thapsigargin or ionomycin has no effect on the ability of IP₃ to release Ca²⁺ (Shuttleworth, 1992; Combettes et al., 1992). Furthermore, studies using brain microsomes in a planar bilayer assay demonstrated that submillimolar concentrations of Ca²⁺ on the luminal side of the channel have no effect upon IP3-mediated channel opening (Bezprozvanny & Ehrlich, 1994).

We chose to investigate the role of cytosolic and luminal Ca^{2+} in the regulation of the IP_3 receptor in RBL cells in order to better understand the mechanism of antigen-induced Ca^{2+} spiking. We show that increases in both cytosolic Ca^{2+} and luminal Ca^{2+} concentrations can potentiate IP_3 -gated Ca^{2+} release by functionally replacing each other as coagonists for IP_3 -mediated channel opening. At high luminal Ca^{2+} concentrations, a majority of the stored Ca^{2+} can be released in the complete absence of cytosolic Ca^{2+} . Under these conditions, Ca^{2+} release can be inhibited by the fast Ca^{2+} buffer BAPTA, suggesting that luminal Ca^{2+} has to bind to a cytosolic site to exert its regulatory role. This suggests that the potentiation by luminal Ca^{2+} is the result of a local positive feedback by which Ca^{2+} ions passing through the pore bind to a site close to the pore on the same channel or on closely associated channels.

MATERIALS AND METHODS

Perfusion Apparatus. Perfusion bottles were pressurized with nitrogen gas to provide a constant flow rate of 23 mL/ min. Teflon tubing (i.d. 0.9 mm) was used to connect the pressure bottles to a series of zero dead volume y-valves (LFYA series solenoid valves, Lee Co.). These valves were controlled by a Basic program and a relay board (DAS-8, Keithley-Metrabyte). The setup allowed one to switch between seven perfusion bottles. The effluent from the y-valves was connected to a cell chamber, which was constructed of Plexiglass and served as a holder for two filters. The bottom filter (MSI AcetatePlus) had a 0.65 µm opening in order to retain cells in the cell chamber. The top filter was made of hardened crepe paper with openings of 20-30 μ m (#520-B, Schleicher & Schuell). This filter was used to restrict the movement of permeabilized cells due to turbulent flow in the filter. The total volume of the cell chamber with filters in place was 400 μ L. The approximate exchange time of the chamber was measured with a short pulse of rhodamine and was found to be ~ 1 s.

The effluent from the cell chamber was collected in a Gilson FC203 fraction collector. In the experiments presented, a collection rate of 1 fraction per 1.2 s was used.

Loading and Permeabilization. RBL cells were grown in 75 cm² tissue culture flasks using D-MEM plus 10% fetal bovine serum, 4 mM L-glutamine, and 10 µg/mL gentamycin. Cells were harvested by a 3 min incubation at 37 °C with HBSS supplemented with 0.05% trypsin and 0.53 mM EDTA. Cells were then washed with extracellular buffer (125 mM NaCl, 5 mM KCl, 20 mM HEPES at pH 7.0, and 0.1 mM EGTA), suspended at 2×10^6 cells/mL of extracellular buffer, and added to one of the pressure bottles. Approximately 0.8×10^6 cells were perfused into the cell chamber for each experiment. The cells were then washed for 30 s with extracellular buffer. Subsequently, trapped cells were perfused with a permeabilization-loading solution which consisted of intracellular buffer (125 mM KCl, 5 mM NaCl, 20 mM HEPES at pH 7.0, 10 μ M EGTA, 1 mM MgCl₂, 1 mM ATP, $1.0-5.0 \mu \text{Ci}$ of $^{45}\text{CaCl}_2$, and $20 \mu \text{g/mL}$ digitonin) which has been run over a Ca²⁺ sponge column (Meyer et al., 1990). The concentration of digitonin was chosen by determining the minimal concentration of digitonin that fully permeabilized RBL cells as measured by staining with trypan blue. Cells were allowed to permeabilize and load with ⁴⁵Ca²⁺ in this buffer for 120 s. Following this loading step, cells were perfused with an intracellular Ca²⁺-EGTA buffer (120 mM KCl, 5 mM NaCl, 20 mM HEPES at pH 7.0, 20 mM EGTA, and equimolar Ca²⁺-EGTA). This buffer was used to remove digitonin and ⁴⁵Ca²⁺ and to clamp the free cytosolic Ca²⁺ level to the desired concentration. Cells remained permeabilized for at least 10 min after removal of digitonin, as assayed by trypan blue (data not shown). Digitonin was removed because control experiments showed that maintaining digitonin in subsequent perfusion steps significantly reduced the fraction of Ca²⁺ stores that could be released by IP₃. The Ca²⁺-EGTA wash step was maintained for 50 s, before the stimulus protocol for a particular experiment was initiated. Release of stored 45Ca²⁺ was measured by collection of 1.2 s fractions. The ⁴⁵Ca²⁺ content of each fraction was measured using a Beckman scintillation counter.

Ca²⁺ Buffers. The concentration of free Ca²⁺ in the perfusing solutions was clamped by addition of an equimolar concentration of Ca²⁺-EGTA to a buffer containing 20 mM EGTA. With this protocol, the free EGTA concentration remained constant for all buffers. This condition was chosen because an earlier study indicated that changing the concentration of free EGTA may alter IP₃-dependent Ca²⁺ release (Combettes et al., 1994). Specifically, the free Ca²⁺ concentration was titrated by addition of a 1:1 Ca²⁺-EGTA mixture (500 mM each) to intracellular buffer that contained 125 mM KCl, 5 mM NaCl, 20 mM HEPES at pH 7.0, and 20 mM EGTA (Tsien & Pozzan, 1989). All solutions were calibrated by using a small amount of the Ca²⁺ indicator Indo-1 in a fluorometer.

The free Ca^{2+} concentration that was present during the loading step was difficult to control because of the low concentration of EGTA in the loading solution (10 μ M). The low EGTA concentration was necessary to reduce the amount of radioactive Ca^{2+} used for each experiment. For this reason, the free $[Ca^{2+}]$ present during loading was directly measured by collecting the effluent during the loading step and measuring the free $[Ca^{2+}]$ with Indo-1. The free Ca^{2+}

concentration during the loading step was increased by addition of ⁴⁵Ca²⁺ at a constant concentration of cold Ca²⁺ (Figure 5b,c), or by addition of cold Ca²⁺ at constant concentration of ⁴⁵Ca²⁺ (Figure 5a).

In order to achieve the high concentrations of BAPTA necessary to rapidly bind Ca²⁺, it was necessary to make the osmolarity of all buffers used in the experiments identical. Experiments using 100 mM BAPTA had the following buffer concentrations: 100 mM BAPTA tetrapotassium salt, 20 mM K⁺-HEPES at pH 7.0, and 5 mM NaCl. The osmolarity of this buffer was measured using an osmometer and found to be 360 mmol/kg. Other buffers used for this experiment were adjusted to 360 mmol/kg by addition of KCl. The 50 mM BAPTA buffer contained 50 mM BAPTA tetrapotassium salt, 20 mM HEPES at pH 7.0, 5 mM NaCl, and 20 mM EGTA. The EGTA control buffer contained 120 mM KCl, 5 mM NaCl, 20 mM HEPES, and 20 mM EGTA.

RESULTS

IP3-Releasable Calcium Stores Are Intact in the Perfusion System. The mechanism of regulation of the IP₃ receptor by Ca²⁺ was investigated with a computer-controlled perfusion apparatus that allowed us to measure the release of ⁴⁵Ca²⁺ from permeabilized cells. Rapid exchange of the perfusate between different solutions was achieved by computer-controlled Y-valves. Up to seven different pressurized bottles could be connected to the cell chamber. Two filters were used in the cell chamber for the retention of cells $(0.6 \mu m)$ for the second filter). The experimental protocol was initiated by perfusing intact cells into the cell chamber. Trapped cells were then permeabilized by changing the perfusate to a buffer containing digitonin. Intracellular Ca²⁺ stores were loaded by addition of 45Ca2+ and ATP to the perfusate. Excess 45Ca2+ was removed 2 min later by perfusion with a Ca²⁺-EGTA buffer. The time course of IP₃-mediated ⁴⁵Ca²⁺ release was then measured by addition of IP3 to the perfusate and the subsequent collection of fractions every 1.2 s.

The results of a typical experiment using this assay system are shown in Figure 1a (n = 9). Permeabilized cells were loaded and washed before the free Ca²⁺ concentration of the perfusate was stepped to 470 nM. Fraction collection was initiated, and a base line of ⁴⁵Ca²⁺ release was established. A background of ⁴⁵Ca²⁺ release was always observed in the assay system. Cells were then perfused with an identical Ca²⁺-EGTA buffer containing 800 nM IP₃. Immediately following perfusion with 800 nM IP₃, the rate of ⁴⁵Ca²⁺ release increased 10-fold above background (Figure 1a). Finally, the amount of ⁴⁵Ca²⁺ remaining in the stores was determined by perfusion with 1% Triton X-100. The percentage of the stored ⁴⁵Ca²⁺ that was released by IP₃ was determined by comparing the area under the peaks resulting from perfusion with IP₃ and with Triton. In this experiment, 800 nM IP₃ released 70% of the total stored ⁴⁵Ca²⁺.

This protocol was repeated at different IP₃ concentrations, while maintaining the cytosolic Ca²⁺ concentration constant at 470 nM, and the data were normalized to the percentage of 45 Ca²⁺ released by 1600 nM IP₃ (n=9). The means and standard deviations of three such experiments are shown in Figure 1b. IP₃-mediated Ca²⁺ release was half-maximal at 187 \pm 38 nM (SD, n=3). The observation that 1 μ M IP₃ releases 70–80% of stored 45 Ca²⁺, and that the concentration

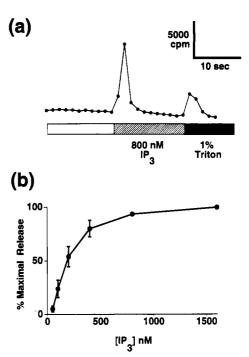


FIGURE 1: Measurement of IP₃-mediated release of stored Ca²⁺. (a) Cells were permeabilized, loaded with ⁴⁵Ca²⁺, and washed for 50 s with a Ca²⁺-EGTA buffer clamped at 45 nM free Ca²⁺. The perfusate was switched to 470 nm free Ca²⁺ 10 s prior to fraction collection. After establishing a base line of ⁴⁵Ca²⁺ release, the perfusate was switched to an identical buffer with the addition of 800 nM IP₃. The amount of calcium that remained in the store was determined by perfusion with 1% Triton. The perfusion protocol is outlined by the stimulus bar. Data points represent cpm per 1.2 s fraction (representative trace, n = 9). (b) The percentage of Ca²⁺ released is determined as a function of the IP₃ concentration (n = 9). Data were normalized to the percentage of ⁴⁵Ca²⁺ released by 1600 nM IP₃ (100% is the sum of the IP₃ and Triton peaks). The mean and standard deviation of three experiments are shown.

for half-maximal release was in the 200 nM range, indicates that Ca^{2+} stores remain remarkably intact using this assay system. Previous studies using brain microsomes typically released only 6% of the stored Ca^{2+} at 10 μ M IP₃ (Finch et al., 1991).

Direct Ca²⁺-Induced Ca²⁺ Release Is Not Significant in RBL Cells. In order to study the regulation of the IP3 receptor by Ca²⁺, it was necessary to first determine the significance of direct Ca²⁺-induced Ca²⁺ release in permeabilized RBL cells. Such a release process has been shown in cells that contain ryanodine receptors (Tsien & Tsien, 1990). We tested for this by asking whether a stepwise increase in the Ca²⁺ concentration of the perfusate would result in release of stored ⁴⁵Ca²⁺. Permeabilized cells were loaded with ⁴⁵Ca²⁺ and washed with a Ca²⁺-EGTA buffer clamped at 45 nM. The cytosolic Ca2+ concentration was then stepped to 470 nM (Figure 2a, n = 8) or 2000 nM (Figure 2b, n = 8). Finally, the amount of ${}^{45}\text{Ca}^{2+}$ remaining in the stores was determined by perfusion with 1% Triton X-100. No appreciable release of stored ⁴⁵Ca²⁺ could be observed following an increase in cytosolic [Ca²⁺] to either 470 nM or 2 μ M. This suggests that direct Ca²⁺-induced Ca²⁺ release is not significant in this cell system.

Cytosolic Ca²⁺ Potentiates IP₃-Mediated Release Only at Low IP₃ Concentrations. The Ca²⁺ dependence of IP₃-mediated Ca²⁺ release was measured at a fixed IP₃ concentration in the presence of different cytosolic Ca²⁺ concentrations. The Ca²⁺ concentration in the perfusate was varied

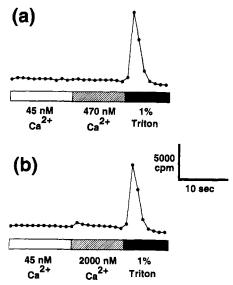


FIGURE 2: Absence of direct Ca^{2+} -induced Ca^{2+} release in RBL cells. Cells were permeabilized, loaded with $^{45}Ca^{2+}$, and washed for 60 s by perfusion with a Ca^{2+} -EGTA buffer clamped at 45 nM free Ca^{2+} . Collection was initiated with the free Ca^{2+} clamped at 45 nM (a and b). The perfusate was then switched to a Ca^{2+} -EGTA buffer clamped at 470 nM free Ca^{2+} (a, single trace shown, n=8) or 2000 nM free Ca^{2+} (b, single trace shown, n=8). At the end of each experiment, the perfusate was switched to 1% Triton. The perfusion protocols are outlined by the stimulus bars. The calibration bars apply to both (a) and (b). The data points represent cpm per 1.2 s fraction.

from 50 nM to 1.6 μ M, which includes the range of Ca²⁺ concentrations observed during Ca²⁺ spiking. The free Ca²⁺ concentration in each Ca²⁺ buffer was measured with the Ca²⁺ indicator Indo-1 in a fluorometer. Buffers were made at a constant free EGTA concentration by addition of variable amounts of equimolar Ca²⁺-EGTA to a buffer containing 20 mM EGTA. Collection was initiated during perfusion with Ca²⁺-EGTA buffers. Release of stored ⁴⁵Ca²⁺ was then measured in response to a step increase to 200 nM or 500 nM IP₃ while maintaining the same free Ca²⁺ concentration. Under these conditions, the amount of Ca²⁺ stored in the lumen of the ER was the same for each experiment.

Following a step to 200 nM IP₃, release of 45 Ca²⁺ was nearly absent at 50 nM free Ca²⁺ but increased at higher cytosolic Ca²⁺ levels, reaching a maximum at 850 nM free Ca²⁺ (Figure 3a, n = 2). The percentage of stored Ca²⁺ released by 200 nM IP₃ is represented in Figure 3b as a function of the free Ca²⁺ concentration (closed circles, n = 2). IP₃-mediated Ca²⁺ release is strongly Ca²⁺-dependent, and the mean Ca²⁺ concentration necessary for half-maximal release was 400 nM. However, when probed with 500 nM IP₃, the Ca²⁺ dependence is much less significant (Figure 3b, open circles, n = 3). These measurements show that an increase in the cytosolic Ca²⁺ concentration potentiates the release of stored Ca²⁺ only at submaximal IP₃ concentrations.

Cytosolic Ca²⁺ Does Not Inactivate the IP₃ Receptor in RBL Cells. One aspect of our results in RBL cells significantly differs from those in brain microsomes and skinned smooth muscle cells. In these cells, a marked inhibition of IP₃-mediated Ca²⁺ release was observed at free Ca²⁺ concentrations between 300 nM and 1 μ M. This type of inhibition, which occurs at a concentration of cytosolic Ca²⁺ achieved during a Ca²⁺ spike, has been suggested to play an integral role in the termination of Ca²⁺ spikes. At

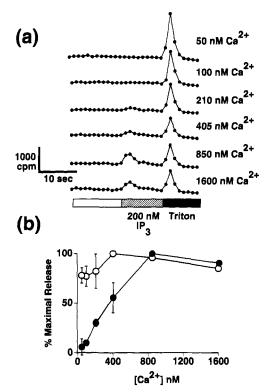


FIGURE 3: Regulation of IP₃-mediated Ca²⁺ release by cytosolic Ca²⁺. (a) Cells were permeabilized, loaded, and washed at 45 nM free Ca²⁺ for 50 s. The perfusate was then switched to a Ca²⁺-EGTA buffer set to free Ca²⁺ concentrations between 50 nM and 1.6 μ M. Fraction collection was initiated 10 s later, and a base line of Ca²⁺ release was established. The perfusate was then switched to an identical buffer containing 200 nM IP₃. The perfusion protocol is outlined by the stimulus bar. Data points represent cpm per 1.2 s fraction (n = 6). (b) The percentage of stored ⁴⁵Ca²⁺ released by 200 nM IP₃ (filled circles, mean and SD, n = 2) or by 500 nM IP₃ (open circles, mean and SD, n = 3) is shown as a function of the cytosolic free Ca²⁺ concentration present during release. Data were normalized to the maximal percent released [percent released at a cytosolic free Ca²⁺ concentration of 850 nM (filled circles) or 405 nM (open circles)].

concentrations of cytosolic Ca^{2+} from 300 nM to 1.6 μ M, which includes the concentration range observed during antigen-induced Ca^{2+} spiking, no significant inhibition of IP₃-mediated Ca^{2+} release was observed in permeabilized RBL cells (Figure 3b, n=5). To ensure the accuracy of the Ca^{2+} -EGTA buffers, each buffer was calibrated with Indo-1. These observations suggest that another mode of spike termination, other than inactivation by Ca^{2+} , is present in RBL cells.

Cytosolic Ca²⁺ Is Not Absolutely Required as a Co-agonist for IP₃-Mediated Ca²⁺ Release. In order to test whether Ca²⁺ is required as a co-agonist along with IP₃ for channel opening as has been proposed by Finch et al. (1991), IP₃-mediated release of ⁴⁵Ca²⁺ was measured in the absence of cytosolic Ca²⁺. The free Ca²⁺ concentration was reduced to very low levels by addition of 20 mM EGTA to the perfusate after an initial wash step at 45 nM free Ca²⁺. The fraction of stored Ca²⁺ that can be released by 1 μ M IP₃ was then determined in the continued presence of 20 mM EGTA (Figure 4a, n = 10). For this protocol, cells were loaded under physiological conditions ([Ca²⁺]_{load} = 300 nM), and the concentration of Ca²⁺ in the lumen is the same for each run. Strikingly, 55% of the stored Ca²⁺ could be released in the absence of cytosolic Ca²⁺. In the presence of 405 nM free

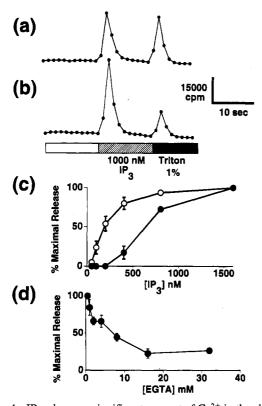


FIGURE 4: IP₃ releases a significant amount of Ca²⁺ in the absence of cytosolic Ca2+. Cells were permeabilized, loaded, and washed at 45 nM free Ca²⁺ for 50 s. The perfusate was then switched to a buffer without Ca^{2+} (a, 20 mM EGTA, n = 10) or to a buffer at 405 nM free Ca²⁺ (b, n = 10). Fraction collection was initiated 10 s later, and subsequently the perfusate was switched to identical buffers containing 1 μ M IP₃. The protocol is outlined by the stimulus bar. Data points represent cpm per 1.2 s fraction. Calibration bars apply for (a) and (b). (c) The same protocol was repeated at different IP3 concentrations, and the data were normalized to the percent of maximal release (percent released by 1600 nM IP₃). The mean and standard deviation of three experiments assayed for release in EGTA (filled circles) or at 405 nM free Ca²⁺ (open circles) are shown as a function of the IP₃ concentration. (d) Control experiment. The percentage of maximal released by 400 nM IP₃ (normalized to release at 0.5 mM EGTA) is shown as a function of the concentration of EGTA present during release (mean and SD, n = 2).

Ca²⁺, the fraction of Ca²⁺ released by 1 μ M IP₃ increased only to 76% (Figure 4b, n=10). This indicates that cytosolic Ca²⁺ is not absolutely required as a co-agonist for Ca²⁺ release in RBL cells.

Analysis of the fraction of Ca²⁺ released, as a function of the IP₃ concentration, showed that the sensitivity of the IP₃ receptor for IP3 increases with an increase in the cytosolic Ca²⁺ concentration. IP₃ titrations are done in the absence of Ca^{2+} (20 mM EGTA, n = 6), and in the presence of 470 nM free Ca^{2+} (n = 6). The data were normalized to the fraction of stored Ca2+ released by 1600 nM IP3. The mean and standard deviation of three such experiments are plotted in Figure 4c. Increasing cytosolic [Ca²⁺] from very low levels (20 mM EGTA, closed circles) to 470 nM free Ca²⁺ (open circles) decreased the half-maximal IP₃ concentration required for release approximately 3-fold (the EC₅₀ for IP₃ in the presence of EGTA is 630 ± 26 nM, n = 3; the EC₅₀ at 470 nM free Ca²⁺ is 187 ± 38 nM, n = 3). Thus, at a constant concentration of Ca2+ in the lumen, an increase in the cytosolic Ca2+ concentration effectively lowers the concentration of IP₃ required for IP₃-mediated Ca²⁺ release.

In a control experiment, we wanted to ensure that there was sufficient Ca²⁺ buffering in the perfusion system in order to clamp the cytosolic Ca²⁺ concentration to very low levels. It is unlikely that residual Ca²⁺ in the 20 mM EGTA buffer would be sufficient to bind to the IP₃ receptor and mediate the release of 55% of the stored Ca²⁺. However, it is conceivable that a significant amount of EGTA is necessary to clamp the Ca²⁺ released by IP₃. We addressed this concern because cellular Ca²⁺ buffers are most likely washed out during the perfusion steps and the amount of Ca²⁺ released by IP₃ is significant when permeabilized cells are concentrated on the filter. We determined the concentration of EGTA necessary to clamp the released Ca²⁺ by measuring the percentage of the store released by 400 nM IP3 at an increasing concentration of EGTA (Figure 4d, n = 2). We assumed that buffering by EGTA was sufficient when a doubling in the EGTA concentration did not further reduce IP₃-mediated Ca²⁺ release. This concentration was reached at 16 mM. For this reason, Ca²⁺-EGTA buffers with a 20 mM excess of EGTA over Ca²⁺ were used in order to tightly clamp the free Ca²⁺ concentration.

The measurements in Figure 4 demonstrate that cytosolic Ca^{2+} is not absolutely required for IP_3 -mediated Ca^{2+} release. However, increasing cytosolic $[Ca^{2+}]$ lowers the concentration of IP_3 necessary for opening of IP_3 -gated channels. Furthermore, Figure 4a demonstrates that a significant fraction of the stored Ca^{2+} can be released in the absence of cytosolic Ca^{2+} . One possible explanation of this observation would be that luminal Ca^{2+} coming through the channel is acting locally, binding to the cytosolic regulatory site and thereby replacing the requirement for cytosolic Ca^{2+} . Therefore, we went on to investigate the role of luminal Ca^{2+} in the regulation of the IP_3 receptor in our system, more specifically, whether the concentration of Ca^{2+} in the lumen could regulate the cytosolic Ca^{2+} requirement of the IP_3 receptor.

Increasing Luminal Ca2+ Can Functionally Replace the Regulatory Requirement for Cytosolic Ca²⁺. Ca²⁺ stores were loaded to different levels by varying the free Ca²⁺ concentration during loading, while keeping the time of loading and the ATP concentration constant. The concentration of luminal Ca2+ was determined as a function of the free Ca^{2+} concentration present during loading (n = 3, with variable loading conditions). A representative curve is shown in Figure 5a, which demonstrates that stores are loaded to a low level in the presence of 100 nM free Ca2+ and are maximally loaded in the presence of 500 nM free Ca²⁺. In Figure 5b, cells were loaded in the presence of 120 nM or 520 nM free Ca²⁺. Cells were then challenged with 1 μ M IP₃ in the presence of 20 mM EGTA. For cells loaded to a low luminal Ca²⁺ concentration, 1 µM IP₃ released only 16% of the stored ⁴⁵Ca²⁺ (top panel, n = 6). In contrast, if the Ca²⁺ stores are loaded to a higher level, 1 μ M IP₃ released 53% of the stored ⁴⁵Ca²⁺ (bottom panel, n = 6). Although we were not able to obtain statistics on the relationship of loading and release (because the free Ca²⁺ present during loading is not reproduced between experiments), Figure 5c summarizes the data from four separate experiments. These measurements show that the fraction of the store that can be released in EGTA is dependent on the concentration of Ca²⁺ in the lumen, especially for cells loaded between 50 and 200 nM free Ca²⁺ (filled circles). When release is assayed in the presence of 405 nM free Ca²⁺ (open circles), the percentage

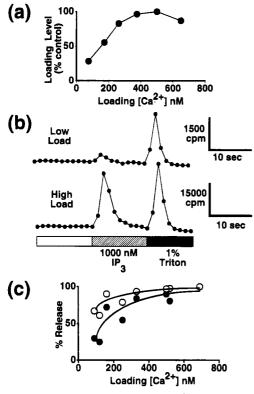


FIGURE 5: Regulation of IP₃-mediated Ca²⁺ release by luminal Ca²⁺. (a) Calibration experiment. The concentration of luminal ⁴⁵Ca²⁺ is shown as a function of the free Ca²⁺ concentration present during loading. The amount of luminal 45Ca2+ was determined by perfusion with 1% Triton. The measurements were corrected for the ratio of ⁴⁵Ca²⁺ to cold Ca²⁺ and normalized to the maximal amount of Ca^{2+} that could be loaded (representative trace, n = 3). (b) Cells were permeabilized with digitonin and loaded in the presence of 120 nM free Ca^{2+} (low load, n = 6) or in the presence of 520 nM free Ca^{2+} (high load, n = 6). Cells were then washed at 45 nM free Ca^{2+} for 50 s, and the perfusate was switched to 20 mM EGTA. Fraction collection was initiated 10 s later, and the perfusate was switched to an identical buffer containing 1 μ M IP₃. The protocol is outlined by the stimulus bar. Data points represent cpm released per 1.2 s fractions. The free Ca2+ concentration during loading was increased from 120 to 520 nM by adding more 45Ca² to the loading mixture. This explains the large difference in ${}^{45}\text{Ca}{}^{2+}$ released. (c) Ca2+ stores were loaded at a range of free Ca2+ concentrations between 100 and 700 nM. The percentage of stored $^{45}\text{Ca}^{2+}$ that could be released by 1 μM IP₃ in the absence of cytosolic Ca²⁺ (20 mM EGTA, closed circles) or in the presence of 405 nM free Ca²⁺ (open circles) is shown as a function of the free Ca²⁺ concentration present during loading. All the data from four separate experiments are plotted.

of stored Ca²⁺ that could be released by IP3 was much less dependent upon the concentration of Ca²⁺ in the lumen. This suggests that luminal Ca²⁺ is an important regulator for IP₃-mediated Ca²⁺ release only at low cytosolic Ca²⁺ concentrations, and that luminal Ca²⁺ can, at least in part, replace the requirement for cytosolic Ca²⁺ as a co-agonists for IP₃-mediated Ca²⁺ release.

High Concentrations of BAPTA Inhibit the Regulation of the IP₃ Receptor by Luminal Ca²⁺. The potentiation of Ca²⁺ release at high luminal Ca²⁺ concentration could be mediated by luminal Ca²⁺ passing through the channel and binding to the same cytosolic regulatory site, thereby replacing the requirement for cytosolic Ca²⁺. Alternatively, luminal Ca²⁺ could also be regulating the IP₃ receptor at a site on the luminal side of the channel as has been proposed previously (Missiaen et al., 1992, 1994). An experiment which could

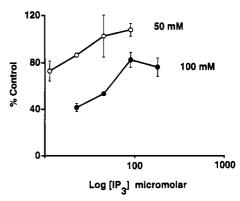


FIGURE 6: Fast Ca²⁺ buffer BAPTA can reduce IP₃-meditated Ca²⁺ release. The protocol for this experiment was similar to the one used for the IP₃ titrations in Figure 2. IP₃-mediated calcium release was measured in the presence of 50 mM BAPTA (open circles) or in the presence of 100 mM BAPTA (filled circles) for a series of IP₃ concentrations. For each IP₃ concentration, the percentage of Ca²⁺ released was calibrated by perfusion with 1% Triton and the normalized to control measurements (Ca²⁺ released by 2 μ M IP₃ in 20 mM EGTA). All points show the mean and standard deviation (n=2, except for the highest IP₃ concentration in each trace, n=4).

differentiate between these two scenarios is the rapid buffering of luminal Ca^{2+} passing through the channel before it has a chance to bind to potential cytosolic regulatory sites. If luminal Ca^{2+} regulates the IP_3 receptor at a cytosolic site, then IP_3 -mediated Ca^{2+} release in the absence of cytosolic Ca^{2+} should be reduced in the presence of a fast cytosolic Ca^{2+} buffer.

In order to buffer Ca2+ at a close distance from the channel, it is necessary to use a Ca2+ buffer with a fast onrate. EGTA has a slow on-rate because it is protonated in the Ca²⁺-free form (Tsien, 1980). It has been estimated that the time required for Ca2+ binding to EGTA is longer than 30 μ s in the presence of 20 mM EGTA. During this time, Ca²⁺ can travel a distance of about 200 nm (Stern, 1992). The same author estimates that 100 mM of the faster Ca²⁺ buffer BAPTA is required to buffer Ca²⁺ within a distance of 18 nm from a Ca2+ channel. Because BAPTA is a competitive inhibitor of IP₃ binding (Richardson & Taylor, 1993), we decided to use the maximal percentage of Ca²⁺ that can be released by IP3 as a measure of whether BAPTA can interfere with Ca2+ release. Decreases in the maximal percentage of Ca²⁺ that can be released by IP₃ in the presence of BAPTA would not reflect competitive inhibition, but instead represent an effect of fast Ca²⁺ buffering.

IP₃ was titrated in the presence of 50 and 100 mM BAPTA at constant osmolarity (Figure 6). The addition of 50 mM BAPTA (open circles) increased the half-maximal concentration of IP₃ necessary for release; however, it had no significant effect on the maximal fraction of release as compared to control (n = 2 except for [IP₃] = 90 μ M, n =4). In contrast, 100 mM BAPTA (filled circles) significantly decreased the percentage of the store which can be released in the absence of cytosolic Ca^{2+} (n = 2 except for [IP₃] = 180 μ M, n = 4). The data shown were normalized to control measurements in which the percentage of Ca²⁺ released by 2 µM IP₃ was measured at 20 mM EGTA. The observed inhibition of Ca²⁺ release by 100 mM BAPTA, and not by 50 mM BAPTA, provides additional support for the hypothesis that luminal Ca²⁺ positively regulates the IP₃ receptor at a cytosolic site.

FIGURE 7: Regulation of the IP₃ receptor by luminal and cytosolic Ca²⁺. Schematic representation of the regulation of a single tetrameric IP₃ receptor. A key feature of the model is that the regulation by luminal Ca²⁺ is mediated by the binding of luminal Ca²⁺ to cytosolic regulatory sites. The arrows indicate that "luminal Ca²⁺ feedback" by which luminal Ca²⁺ potentiates its own release can be initiated by raising [IP₃], by raising cytosolic [Ca²⁺], or by increasing the concentration of Ca²⁺ in the lumen. Once a channel is open, release is maintained by luminal Ca²⁺ that comes through a pore and binds to the cytosolic regulatory sites of the same channel or closely associated channels. The scale bar indicates a calculated range of action for the cloud of high Ca²⁺ surrounding an open channel.

DISCUSSION

Model for the Regulation of the IP3 Receptor by Cytosolic and Luminal Calcium. Our measurements show that cytosolic and luminal Ca²⁺ are both important regulators of the IP₃ receptor. The release of stored Ca²⁺ by 200 nM IP₃ was markedly potentiated by increasing the cytosolic Ca2+ concentration between 100 nM and 1 μ M (Figure 3a,b). This Ca²⁺ dependence was much less significant at 500 nM IP₃ (Figure 3b). In contrast to previous studies using brain microsomes and skinned smooth muscle cells, RBL cells did not show an inhibition of IP₃-mediated Ca²⁺ release when cytosolic Ca²⁺ was elevated above 300 nM (Figure 3b). However, IP₃-mediated Ca²⁺ released had a steep dependence upon the luminal Ca²⁺ concentration when assayed at low cytosolic Ca²⁺ concentrations (Figure 5c). When the concentration of luminal Ca²⁺ was high, 1 µM IP₃ released a majority of the stored Ca²⁺ in the complete absence of cytosolic Ca²⁺ (Figure 5b). However, when assayed at a high cytosolic Ca²⁺ concentration (405 nM), IP₃-mediated Ca²⁺ release was much less dependent upon the concentration of Ca²⁺ in the lumen (Figure 5c). These results demonstrate that, in the presence of IP3, an increase of either cytosolic or luminal Ca²⁺ is sufficient to initiate release of stored Ca²⁺. Therefore, both luminal and cytosolic Ca2+ can act as cofactors for IP₃-mediated Ca²⁺ release. The similar co-factor function of luminal and cytosolic Ca2+ combined with the observation that Ca²⁺ release is inhibited in the presence of high concentrations of the Ca²⁺ buffer BAPTA (Figure 6) supports the hypothesis that luminal and cytosolic Ca²⁺ exert their role by binding to the same cytosolic regulatory site. However, we cannot entirely exclude the possibility that luminal Ca²⁺ exerts its regulatory role at a luminal site.

These results suggest the following model for the regulation of the IP₃ receptor (Figure 7): Opening of the IP₃-gated channel requires binding of IP₃ as well as Ca^{2+} to cytosolic sites. The bound Ca^{2+} can originate from the cytosolic side, or luminal Ca^{2+} ions can cross the channel and bind to cytosolic sites before they equilibrate with cytosolic Ca^{2+}

buffers. These luminal Ca2+ ions sustain Ca2+ release by occupying Ca2+ binding sites on the same channel and potentiate IP3-mediated opening of closely associated channels. Through this mechanism of Ca²⁺ potentiation, luminal Ca²⁺ can generate a rapid and local positive feedback loop by which a single channel is kept persistently open and a group of associated IP3-gated channels can be opened in a synchronous manner. In the complete absence of cytosolic Ca²⁺, the positive feedback may be initiated by a small residual Ca²⁺ current. Such a current has been observed in a planar bilayer assay using IP3 receptors from reconstituted brain microsomes (Bezprozvanny et al., 1991). This rapid and local positive feedback by which luminal Ca2+ potentiates its own release will be referred to as "luminal Ca²⁺ feedback". A recent theoretical study closely predicted the results of previous Ca2+ release studies using a postulated Ca²⁺ feedback by which luminal Ca²⁺ ions bind to a second regulatory Ca²⁺ binding site not accessible from the cytosol located within the channel pore (Swillens et al., 1994). Although there are important differences between our data and the Swillens' model, specifically we do not observe a Ca²⁺-dependent inhibition, it will be interesting to learn whether the different assumptions in the model proposed in our study would lead to similar predictions as those calculated by Swillens et al.

Relationship to Other Studies on the Calcium Regulation of the IP3 Receptor. Some of the controversies in the literature concerning the regulation of the IP3 receptor by luminal and cytosolic Ca2+ can be addressed in the context of our measurements. According to our studies and the previous observations of Missiaen et al. (1994), the dependence of IP₃-mediated release on cytosolic Ca²⁺ can be more or less significant depending upon the amount of Ca2+ in the lumen. Furthermore, we noticed in our filter system that a significant amount of EGTA (20 mM) was required to sufficiently buffer the Ca²⁺ released from the store (Figure 4d). Both of these factors must be considered in order to determine the significance of Ca²⁺ potentiation of release in each cellular system. For example, the Ca²⁺ dependence of release in Figure 3 would have been much less prominent if assayed at a lower concentration of EGTA. These considerations may explain the differences between the observations of Finch and Goldin (1994), who reported a significant dependence on cytosolic Ca2+ in brain microsomes, and the observations of Combettes and colleagues (Combettes et al., 1994), who found no Ca²⁺ dependence using a similar preparation. It is conceivable that the luminal Ca²⁺ concentration and the concentration of EGTA required for sufficient buffering may have been different in these two assay systems.

Our studies may also explain some of the differences between the observations of Missiaen et al. (1992), who found that partial depletion of Ca²⁺ stores in permeabilized A7r5 smooth muscle cells renders them less sensitive to IP₃, and the observations of Shuttleworth (1992), Combettes et al. (1992), and Bezprozvanny and Ehrlich (1994), who reported that store loading had no effect on IP₃-mediated Ca²⁺ release. The differences in the latter studies could be in part due to a high level of store loading at which the effect of luminal Ca²⁺ is less significant (Figure 5c). Our results and those of Missiaen et al. (1994) indicate that the dependence of luminal Ca²⁺ is more significant at low cytosolic Ca²⁺ concentration and would be much less

apparent if assayed at higher cytosolic Ca²⁺ concentrations.

Missiaen et al. (1992) measured the IP₃ dependence of Ca²⁺ release at different loading levels and found that more IP₃ is required to release 50% of the releasable Ca²⁺ at lower loading levels than at higher ones, and that the potentiation of IP₃-mediated Ca²⁺ release by cytosolic Ca²⁺ is loadingdependent (Missiaen et al., 1994). They proposed that luminal Ca²⁺ binds to a luminal site, thereby increasing the IP₃ sensitivity of the receptor and replacing the requirement for cytosolic Ca²⁺ (Missiaen et al., 1992, 1994). This interpretation is not consistent with the inhibition of Ca²⁺ release in the presence of BAPTA (Figure 6). Our measurements also suggest that the change in the IP3 requirement observed by Missiaen et al. (1992) could result from a higher occupancy of the cytosolic Ca2+ regulatory site at higher luminal Ca²⁺ concentration and not from a shift in the IP₃ binding affinity mediated by a luminal Ca²⁺ regulatory site.

The spatial range of luminal Ca2+ feedback can be approximated by examining the Ca²⁺ binding properties of BAPTA and EGTA. The primary difference between BAPTA and EGTA is that BAPTA is not protonated in the physiological pH range (Tsien, 1980). Therefore, BAPTA has a significantly faster on-rate for Ca2+ binding than the partially protonated EGTA. A recent study calculated the time required for Ca²⁺ ions coming through the pore of the channel to bind to Ca²⁺ buffers (Stern, 1992). Stern's calculations can be used to estimate that the 20 mM EGTA used in our experiment should buffer Ca2+ only after it diffuses a distance of approximately 200 nm from the pore. Furthermore, these calculations predict that 100 mM BAPTA is required to buffer a 1 pA local Ca²⁺ flux approximately 18 nm from the pore. Parys et al. (1993) observed that addition of 10 mM BAPTA had no effect on IP3-mediated release; however, our results and these calculations predict that it is necessary to use higher concentrations of Ca²⁺ buffer in order to inhibit the local feedback of luminal Ca²⁺ onto the IP₃ receptor. The observation that 100 mM BAPTA can inhibit Ca2+ release, while 50 mM BAPTA has little effect, suggests that the binding site for luminal Ca²⁺ should be within approximately 20 nm of the channel pore. This is consistent with the model that luminal Ca²⁺ feedback is mediated by Ca²⁺ binding to cytosolic binding sites on the same channel or on closely associated channels.

Significance of Ca²⁺ Regulation of the IP₃ Receptor for Ca²⁺ Spiking and Ca²⁺ Waves. Luminal Ca²⁺ feedback is well suited to be an important mechanism for the generation of Ca²⁺ spikes and Ca²⁺ waves. In Xenopus oocytes, localized Ca²⁺ release microdomains have been observed by confocal microfluorometry following a rapid increase in the IP₃ concentration (Parker & Ivorra, 1993). Our measurements support the hypothesis that such microdomains of Ca²⁺ release are mediated by luminal Ca²⁺ feedback, which results in the synchronized opening of a group of IP₃-gated channels and generates a local Ca²⁺ pulse. These local Ca²⁺ pulses are likely to be the building blocks of Ca²⁺ spikes and Ca²⁺ waves.

Luminal Ca²⁺ feedback may also explain the phenomenon of "quantal" Ca²⁺ release. Previous studies have shown that IP₃-mediated Ca²⁺ release is a biphasic process (Muallem et al., 1989) and that small incremental increases in IP₃ concentration lead to short pulses of Ca²⁺ release (Meyer & Stryer, 1990). Quantal Ca²⁺ release has been observed in many cell systems and can also be observed in Figure 3a of

this study. Immediately following the perfusion of 200 nM IP₃, Ca^{2+} is released at a fast rate; however, the release rate rapidly drops to near base line, even though IP₃ is still present and the Ca^{2+} stores are still loaded to high levels. It is interesting to consider whether the observations of quantal Ca^{2+} release can be explained by IP₃-mediated initiation and termination of luminal Ca^{2+} feedback. Indeed, luminal Ca^{2+} feedback would be triggered as soon as the IP₃ concentration increased above a critical threshold level and subsequently terminated when luminal Ca^{2+} levels fall below a critical level, at which point the luminal Ca^{2+} feedback cannot be sustained. The transient triggering of luminal Ca^{2+} feedback would generate a short Ca^{2+} pulse in response to a submaximal increase in IP₃ concentration which would only lower the luminal Ca^{2+} concentration but not empty the Ca^{2+} stores.

These considerations suggest that IP₃-dependent Ca²⁺ stores are a source of local and short Ca²⁺ pulses that are initiated by luminal Ca²⁺ feedback and terminated when the feedback can no longer be sustained. A macroscopic Ca²⁺ spike is then the result of the synchronized triggering of many such local Ca²⁺ pulses in an individual cell, and a Ca²⁺ wave is the result of the sequential triggering of neighboring Ca²⁺ pulses across a cell or from one cell to another. How can local Ca²⁺ pulses by synchronized? Our measurements suggest that luminal Ca²⁺ feedback can be triggered by increasing the concentration of IP₃, increasing the concentration of cytosolic Ca²⁺, or increasing the concentration of Ca²⁺ in the lumen.

One mechanism by which an increase in IP₃ concentration could mediate synchronization of Ca2+ release has been proposed previously by one of the authors. According to this model, Ca2+ that is released by IP3 increases PLC activity, leading to the production of more IP3 (Meyer & Stryer, 1988). The current study supports the possibility of a second mode of synchronization mediated by the diffusion of released Ca2+ to neighboring Ca2+ stores that are not yet activated. The direct binding of Ca2+ to cytosolic sites on these inactive stores could initiate a secondary luminal Ca²⁺ feedback. Synchronization by Ca2+ diffusion and Ca2+ binding to cytosolic sites of the IP3 receptor was originally suggested by Finch et al. (1991). Our studies also predict the possibility of a third mode of synchronization. After diffusion, Ca²⁺ could be pumped into an active store, and the increase in luminal Ca²⁺ would then initiate luminal Ca²⁺ feedback. These three mechanisms of synchronization have different kinetic properties. For instance, Ca2+ diffusion is significantly slower than the diffusion of IP₃ (Albritton et al., 1992). Furthermore, Ca²⁺ activation of PLC and Ca²⁺ loading into stores are both thought to be relatively slow processes, whereas the binding of Ca2+ to a cytosolic regulatory site is a rapid process. The positive feedback mechanisms mediated by Ca²⁺ activation of PLC, by Ca²⁺ activation of the IP₃ receptor, and by increasing luminal Ca²⁺ are mathematically equally well suited to explain the triggering of Ca²⁺ spikes and the propagation of Ca²⁺ waves. It will be interesting to learn whether all three synchronization mechanisms are used for different types of Ca²⁺ signals and for different cell types.

ACKNOWLEDGMENT

We thank Drs. G. J. Augustine, C. Nicchitta, B. Goldsmith, and E. C. Murphy for simulating discussions. We also thank

D. Poe for technical assistance in construction of the perfusion apparatus.

REFERENCES

- Allbritton, N. L., Meyer, T., & Stryer, L. (1992) Science 258, 1812—1815.
- Berridge, M. J. (1993) Nature 361, 315-325.
- Bezprozvanny, I., & Ehrlich, B. E. (1994) J. Gen. Physiol. 104, 821-856.
- Bezprozvanny, I., Watras, J., & Ehrlich, B. E. (1991) Nature 351, 751-754.
- Blondel, O., Takeda, J., Janssen, H., Seino, S., & Bell, G. I. (1993) J. Biol. Chem. 268, 11356-11363.
- Boitano, S., Dirksen, E. R., & Sanderson, M. J. (1992) Science 258, 292-295.
- Combettes, L., & Champeil, P. (1994) Science 265, 813-815.
- Combettes, L., Claret, M., & Champeil, P. (1992) FEBS Lett. 301, 287-290.
- Combettes, L., Hannaert-Merah, Z., Coquil, J. F., Rousseau, C., Claret, M., Swillens, S., & Champeil, P. (1994) *J. Biol. Chem.* 269, 17561–17571.
- Cornell-Bell, A. H., Finkbeiner, S. M., Cooper, M. S., & Smith, S. J. (1990) *Science* 247, 470-473.
- Eiseman, E., & Bolen, J. B. (1992) Nature 355, 78-80.
- Ferris, C. D., Huganir, R. L., Supattapone, S., & Snyder, S. H. (1989) *Nature 342*, 87-89.
- Finch, E. A., & Goldin, S. M. (1994) Science 265, 813-815.
- Finch, E. A., Turner, T. J., & Goldin, S. M. (1991) Science 252, 443-446.
- Furuichi, T., Yoshikawa, S., Miyawaki, A., Wada, K., Maeda, N., & Mikoshiba, K. (1989) *Nature 342*, 32-38.
- Gilkey, J. C., Jaffee, L. F., Ridgway, E. B., & Reynolds, G. T. (1978) J. Cell Biol. 76, 448-466.
- Hanson, P. I., Meyer, T., Stryer, L., & Schulman, H. (1994) Neuron 12, 943-956.
- Iino, M., & Endo, M. (1992) Nature 360, 76-78.
- Kasai, H., & Augustine, G. J. (1990) Nature 348, 735-738.
- Lechleiter, J., Girard, S., Peralta, E., & Clapham, D. (1991) Science 252, 123-126.
- Maeda, N., Kawasaki, T., Nakade, S., Yokota, N., Taguchi, T., Kasai, M., & Mikoshiba, K. (1991) J. Biol. Chem. 266, 1109– 1116.
- Metzger, H., Alcaraz, G., Hohman, R., Kinet, J. P., Pribluda, V., & Quarto, R. (1986) Annu. Rev. Immunol. 4, 419-470.

- Meyer, T. (1991) Cell 64, 675-678.
- Meyer, T., & Stryer, L. (1988) Proc. Natl. Acad. Sci. U.S.A. 85, 5051-5055.
- Meyer, T., & Stryer, L. (1990) Proc. Natl. Acad. Sci. U.S.A. 87, 3841-3845.
- Meyer, T., & Stryer, L. (1991) Annu. Rev. Biophys. Biophys. Chem. 20, 153-174.
- Meyer, T., Wensel, T., & Stryer, L. (1990) *Biochemistry* 29, 32-37.
- Millard, P. J., Ryan, T. A., Webb, W. W., & Fewtrell, C. (1989) *J. Biol. Chem.* 264, 19730–19739.
- Missiaen, L., De Smedt, H., Droogmans, G., & Casteels, R. (1992) *Nature 357*, 599-602.
- Missiaen, L., De Smetdt, H., Parys, J. B., & Cateels, R. (1994) J. *Biol. Chem.* 269, 7238-7242.
- Miyazaki, S., Yuzaki, M., Nakada, K., Shirakawa, H., Nakanishi, S., Nakade, S., & Mikoshiba, K. (1992) Science 257, 251-255.
- Muallem, S., Pandol, S. J., & Beeker, T. G. (1989) *J. Biol. Chem.* 264, 205-212.
- Parker, I., & Ivorra, I. (1993) J. Physiol. 461, 133-165.
- Parys, J. B., Missiaen, L., De Smedt, H., & Casteels, R. (1993) J. Biol. Chem. 268, 25206–25212.
- Plaut, M., Pierce, J. H., Watson, C. J., Hanley-Hyde, J., Nordan, R. P., & Paul, W. E. (1989) *Nature* 339, 64-67.
- Richardson, A., & Taylor, C. W. (1993) J. Biol. Chem. 268, 11528-11533.
- Sanderson, M. J., Charles, A. C., & Dirksen, E. R. (1990) Cell Regul. 1, 585-596.
- Shuttleworth, T. J. (1992) J. Biol. Chem. 267, 3573-3576.
- Stern, M. D. (1992) Cell Calcium 13, 183-192.
- Sudhof, T. C., Newton, C. L., Archer, B. T., III, Ushkaryov, Y. A., & Mignery, G. A. (1991) *EMBO J. 10*, 3199-3206.
- Swillens, S., Combettes, L., & Champeil, P. (1994) *Proc. Natl. Acad. Sci. U.S.A. 91*, 10074–10078.
- Tse, A., Tse, F. W., Almers, W., & Hille, B. (1993) Science 260, 82-84.
- Tsien, R. Y. (1980) Biochemistry 19, 2396-2404.
- Tsien, R. Y., & Pozzan, T. (1989) Methods Enzymol. 172, 231–
- Tsien, R. W., & Tsien, R. Y. (1990) Annu. Rev. Cell Biol. 6, 715-
- Woods, N. M., Cuthbertson, K. S., & Cobbold, P. H. (1986) *Nature* 319, 600-602.

BI9505878